Abstract
A simple and efficient optical pulse re-shaper based on the concept of temporal coherence synthesization is proposed and analyzed in detail. Specifically, we demonstrate that an arbitrary chirp-free (transform-limited) optical pulse waveform can be synthesized from a given transform-limited Gaussian-like input optical pulse by coherently superposing a set of properly delayed replicas of this input pulse, e.g. using a conventional multi-arm interferometer. A practical implementation of this general concept based on the use of conventional concatenated two-arm interferometers is also suggested and demonstrated. This specific implementation allows the synthesis of any desired temporally-symmetric optical waveform with time features only limited by the input pulse bandwidth. A general optimization algorithm has been developed and applied for designing the system specifications (number of interferometers and relative time delays in these interferometers) that are required to achieve a desired optical pulse re-shaping operation. The required tolerances in this system have been also estimated and confirmed by numerical simulations. The proposed technique has been experimentally demonstrated by re-shaping an approximately 1-ps Gaussian-like optical pulse into various temporal shapes of practical interest, i.e. picosecond transform-limited flat-top, parabolic and triangular pulses (all centered at a wavelength of approximately 1550nm), using a simple two-stage interferometer setup. A remarkable synthesis accuracy and high energetic efficiency have been achieved for all these pulse re-shaping operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.