Abstract

The transformation of ammonia from pollutant to energy rich carbon free fuel presents an opportunity for the transition of wastewater services to net zero. However, there is only limited knowledge of how the product quality of ammonia recovered from real wastewater might impact on its downstream exploitation in fuel cells. This study therefore exploited vacuum stripping to produce an aqueous ammonia concentrate from real wastewater that was then evaluated within a direct ammonia fuel cell, as a reference technology for energy generation. A 17 g L−1 aqueous ammonia product was created by vacuum stripping centrate from a full-scale anaerobic digester (2 gN L−1). The pH of the product was lower than expected due to the mild-acidification of solution by the co-transport of low MW volatile organic compounds. This reduced power density in the fuel cell, due to the incomplete deprotonation of ammonia (lowering oxidation potential at the fuel cell anode) and a decrease in [OH–] which is required for complete electrochemical conversion. We propose that improved vacuum stripping design can increase the distillate ammonia concentration and produce a more alkaline product, yielding markedly higher fuel cell power density by enhancing ammonia oxidation at the anode (through concentration and deprotonation) and reducing [OH–] mass transfer limitations. As the separation energy for ammonia is dominated by the latent heat demand of water vapour, a synergy exists between creation of a concentrated ammonia product (that improves power density) and reducing the energy demand for separation. The energy balance from this research evidences that despite the high latent heat demand for separation, the low cost of heat coupled with the power produced from ammonia yield a favourable economic return when compared to conventional biological treatment. This study also identifies that revaluing ammonia as a carbon free fuel can help reposition wastewater treatment for a zero-carbon future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call