Abstract

As corrosion products of Zn anodes in ZnSO4 electrolytes, Zn4SO4 (OH)6·xH2O with loose structure cannot suppress persistent side reactions but can increase the electrode polarization and induce dendrite growth, hindering the practical applications of Zn metal batteries. In this work, a functional layer is built on the Zn anode by a gelatin-assistant corrosion and low-temperature pyrolysis method. With the assistant of gelatin, undesired corrosion products are converted into a uniform nanoflake array comprising ZnO coated by gelatin-derived carbon on Zn foil (denoted Zn@ZnO@GC). It is revealed that the gelatin-derived carbons not only enhance the electron conductivity, facilitate Zn2+ desolvation, and boost transport/deposition kinetics, but also inhibit the occurrence of hydrogen evolution and corrosion reactions on the zincophilic Zn@ZnO@GC anode. Moreover, the 3D nanoflake array effectively homogenizes the current density and Zn2+ concentration, thus inhibiting the formation of dendrites. The symmetric cells using the Zn@ZnO@GC anodes exhibit superior cycling performance (over 7000h at 1mA cm-2/1 mAh cm-2) and without short-circuiting even up to 25 mAh cm-2. The Zn@ZnO@GC||NaV3O8 full cell works stably for 5000 cycles even with a limited N/P ratio of ≈5.5, showing good application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.