Abstract

Negative thermal expansion (NTE) is an intriguing property for not only fundamental studies but also technological applications. However, few NTE materials are available compared with the huge amount of positive thermal expansion materials. The discovery of new NTE materials remains challenging. Here we report a chemical modification strategy to transform thermal expansion from positive to negative in cubic magnetic compounds of (Zr,Nb)Fe2 by tuning the magnetic exchange interaction. Furthermore, an isotropic zero thermal expansion can be established in Zr0.8Nb0.2Fe2 (αl = 1.4 × 10-6 K-1, 3-470 K) over a broad temperature range that is even wider than that of the prototype Invar alloy of Fe0.64Ni0.36. The NTE of (Zr,Nb)Fe2 is originated from the weakened magnetic exchange interaction and the increased d electrons of Fe by the Nb chemical substitution, so that the magnetovolume effect overwhelms the contribution of anharmonic lattice vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.