Abstract
Localizing failure-inducing code is essential for software debugging. Manual fault localization can be quite tedious, error-prone, and time-consuming. Therefore, a huge body of research e orts have been dedicated to automated fault localization. Spectrum-based fault localization, the most intensively studied fault localization approach based on test execution information, may have limited effectiveness, since a code element executed by a failed tests may not necessarily have impact on the test outcome and cause the test failure. To bridge the gap, mutation-based fault localization has been proposed to transform the programs under test to check the impact of each code element for better fault localization. However, there are limited studies on the effectiveness of mutation-based fault localization on sufficient number of real bugs. In this paper, we perform an extensive study to compare mutation-based fault localization techniques with various state-of-the-art spectrum-based fault localization techniques on 357 real bugs from the Defects4J benchmark suite. The study results firstly demonstrate the effectiveness of mutation-based fault localization, as well as revealing a number of guidelines for further improving mutation-based fault localization. Based on the learnt guidelines, we further transform test outputs/messages and test code to obtain various mutation information. Then, we propose TraPT, an automated Learning-to-Rank technique to fully explore the obtained mutation information for effective fault localization. The experimental results show that TraPT localizes 65.12% and 94.52% more bugs within Top-1 than state-of-the-art mutation and spectrum based techniques when using the default setting of LIBSVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.