Abstract
Let $L$ be a big holomorphic line bundle on a compact complex manifold $X.$ We show how to associate a convex function on the Okounkov body of $L$ to any continuous metric $e^{-\psi}$ on $L.$ We will call this the Chebyshev transform of $\psi,$ denoted by $c[\psi].$ Our main theorem states that the integral of the difference of the Chebyshev transforms of two weights is equal to the relative energy of the weights, which is a well-known functional in K\ahler-Einstein geometry and Arakelov geometry. We show that this can be seen as a generalization of classical results on Chebyshev constants and the Legendre transform of invariant metrics on toric manifolds. As an application we prove the differentiability of the relative energy in the ample cone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales scientifiques de l'École normale supérieure
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.