Abstract
The mutual information (MI) based on averaged shifted histogram (ASH) probability density estimator is considered as a good indicator of relevance between input variables and output variable. However, it cannot deal with redundant input variables problem. Therefore, a method integrates principal component analysis (PCA) with MI is proposed for radial basis function network (RBFN) to improve the predicting performance of RBFN. Firstly, PCA is employed to characterize the PCs from original variables, among which there is non-correlation. Secondly, MI based on ASH is applied to select the several closest correlation PCs with output variable as the new input variables. Finally, PCA-ASH-RBFN is employed to develop the housing price model based on the Boston housing data set. The result shows that PCA-ASH-RBFN has better prediction and robust performance than PCA-RBFN and RBFN integrating with robust feature selection for input variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.