Abstract

Metastasis of tumor cells is associated with epithelial-to-mesenchymal transition (EMT), which is a process whereby epithelial cells lose their polarity and acquire new features of mesenchyme. EMT has been reported to be induced by transforming growth factor-β1 (TGF-β1), but its mechanism remains elusive. In this study, we performed a study to investigate whether PI3K/Akt and MAPK/Erk1/2 signaling pathways involved in EMT in the human lung cancer A549 cells. The results showed that after treated with TGF-β1 for 48h, A549 cells displayed more fibroblast-like shape, lost epithelial marker E-cadherin and increased mesenchymal markers Vimentin and Fibronectin. Moreover, TGF-β1-induced EMT after 48h was accompanied by increased of cell migration and change of Akt and Erk1/2 phosphorylation. In addition, EMT was reversed by PI3K inhibitor LY294002 and MEK1/2 inhibitor U0126, which suggested that A549 cells under stimulation of TGF-β1 undergo a switch into mesenchymal cells and PI3K/Akt and MAPK/Erk1/2 signaling pathways serve to regulate TGF-β1-induced EMT of A549 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.