Abstract

The regulation of valve interstitial cell (VIC) function in response to tissue injury and valve disease is not well understood. Because transforming growth factor-beta (TGF-beta) has been implicated in tissue repair, we tested the hypothesis that TGF-beta is a regulator of VIC activation and associated cell responses that occur during early repair processes. We used a well-characterized wound model that was created by mechanical denudation of a confluent VIC monolayer to study activation and repair 24 hours after wounding. VIC activation was demonstrated by immunofluorescent localization of alpha-smooth muscle actin (alpha-SMA), and alpha-SMA mRNA levels were quantified by real-time polymerase chain reaction. Proliferation and apoptosis were quantified by bromodeoxyuridine staining and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Repair was quantified by measuring VIC extension into the wound, and TGF-beta expression was shown by immunofluorescent localization of intracellular TGF-beta. Compared with nonwounded monolayers, VICs at the wound edge showed alpha-SMA staining, increased alpha-SMA mRNA content, elongation into the wound with stress fibers, proliferation, and apoptosis. VICs at the wound edge also showed increased TGF-beta and pSmad2/3 staining with co-expression of alpha-SMA. Addition of TGF-beta neutralizing antibody to the wound decreased VIC activation, alpha-SMA mRNA content, proliferation, apoptosis, wound closure rate, and stress fibers. Conversely, exogenous addition of TGF-beta to the wound increased VIC activation, proliferation, wound closure rate, and stress fibers. Thus, wounding activates VICs, and TGF-beta signaling modulates VIC response to injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.