Abstract

Transforming growth factor-beta (TGF-beta) signaling facilitates tumor growth and metastasis in advanced cancer. In the present study, we identified differentially expressed in chondrocytes 1 (DEC1, also known as SHARP2 and Stra13) as a downstream target of TGF-beta signaling, which promotes the survival of breast cancer cells. In the mouse mammary carcinoma cell lines JygMC(A) and 4T1, the TGF-beta type I receptor kinase inhibitors A-44-03 and SB431542 induced apoptosis of cells under serum-free conditions. Oligonucleotide microarray and real-time reverse transcription-PCR analyses revealed that TGF-beta induced DEC1 in these cells, and the increase of DEC1 was suppressed by the TGF-beta type I receptor kinase inhibitors as well as by expression of dominant-negative TGF-beta type II receptor. Overexpression of DEC1 prevented the apoptosis of JygMC(A) cells induced by A-44-03, and knockdown of endogenous DEC1 abrogated TGF-beta-promoted cell survival. Moreover, a dominant-negative mutant of DEC1 prevented lung and liver metastasis of JygMC(A) cells in vivo. Our observations thus provide new insights into the molecular mechanisms governing TGF-beta-mediated cell survival and metastasis of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.