Abstract

Transforming growth factor-beta1 (TGF-beta1) inhibits theca-interstitial cell (TIC) androgen biosynthesis while enhancing progesterone production without altering P45017 alpha protein content. The purpose of the present study was to define the mechanism of TGF-beta 1 inhibition of ovarian androgen production by determining the effects of TGF-beta 1 on steroidogenic enzyme messenger RNA (mRNA) expression and 17 alpha-hydroxylase activity in TIC in vitro. TIC isolated from hypophysectomized immature rat ovaries by Percoll gradient centrifugation were cultured with and without LH and TGF-beta 1 up to 6 days. At various times, cytoplasmic mRNA was extracted from the TIC, and P450scc, 3 beta-HSD and P450(17 alpha) mRNA were measured by specific assays, using RT-PCR. Treatment with TGF-beta 1 alone (0.1-100 ng/ml) had no effect on mRNA expression at 2 days but increased P450scc and 3 beta-HDS mRNA at 4 days. TGF-beta did not alter the LH stimulation of P450scc and 3 beta-HSD mRNA up to 6 days but caused a modest (2.5-fold) increase in P450 (17 alpha) mRNA at 2 days. Specificity studies with inhibin-A (30 ng/ml), activin-A (100 ng/ml), and MIS (300 ng/ml) demonstrated that the effects of TGF-beta 1 were unique within this family of peptides. We next examined the effect of TGF-beta 1 on 17 alpha-hydroxylase activity. Kinetic analysis revealed that the 17 alpha-hydroxylase enzyme has an apparent Michaelis-Menten constant of 3.42 mumol/liter and maximum velocity of 0.23 pmol/min x mg protein. TGF-beta 1 inhibited 17 alpha-hydroxylase activity by a noncompetitive mechanism with an apparent inhibin constant (Ki) of 46.4 pM. The results of our studies demonstrate that TGF-beta 1 directly inhibits TIC androgen production by a noncompetitive mechanism. This novel mechanism may be important in preventing excessive androgen production in developing ovarian follicles without preventing differentiation of the TIC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.