Abstract

The molecular mechanisms underlying peripheral neuropathies have only been partially elucidated. In particular, the regulatory factors that control the stability and turnover of mature myelin are largely unknown. Transforming growth factor beta 1 (TGF-β1), and its associated receptors, are expressed by mature Schwann cells. On this basis, we postulated that TGF-β1 may be an autocrine regulator of mature myelin. This hypothesis was tested by examining the ultrastructure of myelin in adult mice that have a null mutation of their TGF-β1 gene. We report here that the myelin of these mice is grossly abnormal. At the nodes of Ranvier, the cytoplasmic collars of the Schwann cells were expanded and the myelin had a honeycomb appearance. Focal (tomacula-like) hypermyelin structures were observed in the internodal regions of a significant number of axons in mutant nerve, and were not observed in littermate controls. Axon diameters were within the normal range and no axonal pathology was evident in mutant nerve and macrophages were absent. Results imply that lack of TGF-β1 may have a direct effect on Schwann cells. We suggest that TGF-β1 may stabilise compact myelin via an autocrine mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.