Abstract
Although transforming growth factor (TGF)-alpha, a member of the epidermal growth factor (EGF) family, has been shown to protect neurons against excitotoxic and ischemic brain injuries, its mechanism of action remains unknown. In the present study, we used in vitro models of apoptotic or necrotic paradigms demonstrating that TGF-alpha rescues neurons from N-methyl-D-aspartate (NMDA)-induced excitotoxic death, with the obligatory presence of astrocytes. Because neuronal tissue-type plasminogen activator (t-PA) release was shown to potentiate NMDA-induced excitotoxicity, we observed that TGF-alpha treatment reduced NMDA-induced increase of t-PA activity in mixed cultures of neurons and astrocytes. In addition, we showed that although TGF-alpha induces activation of the extracellular signal-regulated kinases (ERKs) in astrocytes, it failed to activate p42/p44 in neurons. Finally, we showed that TGF-alpha, by an ERK-dependent mechanism, stimulates the astrocytic expression of PAI-1, a t-PA inhibitor, which mediates the neuroprotective activity of TGF-alpha against NMDA-mediated excitotoxic neuronal death. Taken together, we indicate that TGF-alpha rescues neurons from NMDA-induced excitotoxicity in mixed cultures through inhibition of t-PA activity, involving PAI-1 overexpression by an ERK-dependent pathway in astrocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.