Abstract
Leptomeningeal fibrosis is important in the pathogenesis of communicating hydrocephalus following subarachnoid hemorrhage; however, the underlying mechanisms of leptomeningeal fibrosis remain largely unclear. In the present study, primary meningeal mesothelial cells (MMCs) were used as a cell model to investigate the effect of transforming growth factor‑β1 (TGF‑β1) on leptomeningeal fibrosis. Firstly, primary MMCs were isolated from rat brains and characterized by immunofluorescene, staining positive for keratin and vimentin, but negative for factor VIII. Upon TGF‑β1 treatment, MMCs were induced to express connective tissue growth factor (CTGF), an indicator of fibrosis, in a dose‑dependent manner. Furthermore, p38 mitogen‑activated protein kinase (MAPK) signaling was significantly activated by TGF‑β1. However, in the presence of a p38 MAPK inhibitor, TGF‑β1‑induced CTGF expression was markedly suppressed. Together, these data suggest that TGF‑β1 could induce fibrosis of MMCs via the p38 MAPK signaling pathway, providing a novel potential target for intervention in TGF‑β1‑induced leptomeningeal fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.