Abstract

AbstractStudies comparing transfusion and nontransfusion patients suggest an increased risk of postoperative infections in transfusion groups. Supernatants of blood components have been shown to affect the function of T lymphocytes and natural killer cells. Here, we found that supernatants from stored red blood cells (RBCs) inhibit human neutrophil migration in response to formyl peptides and stimulate neutrophil locomotion. These effects can be observed with high dilutions of RBC supernatants, such as 1:5 × 106 (vol/vol), able to trigger locomotion as well as desensitization of the cells to alternative chemoattractants. The phenomenon might be mediated by chemoattractants present in the supernatants. As RBC supernatants failed to mobilize intracellular free calcium, the chemoattractants should belong to the group of pure chemoattractants, that is, soluble Fas ligand (sFasL) and transforming growth factor–β1 (TGF-β1), known to act without increasing calcium levels. Recombinant TGF-β1, but not sFasL, was found to reproduce the ability of RBC supernatants to both inhibit neutrophil response to formyl peptides and stimulate neutrophil locomotion. Moreover, TGF-β1–immunodepleted supernatants did not display neutrophil-directed activities. Finally, RBC supernatants from RBCs stored after depletion of leukocytes were incapable of affecting neutrophil function. With neutrophils acting as a first-line antimicrobial defense, the ability, shown here, of high dilutions of RBC supernatants to inhibit neutrophil chemotaxis through TGF-β1 may be a relevant determinant of infections in the postoperative period for transfusion patients. Consistently, the neutrophil chemotactic response to formyl peptide was inhibited by the plasma obtained from 5 transfusion patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.