Abstract

The management of drinking water treatment residuals (DWTRs) poses significant environmental and economic challenges for water treatment facilities; however, these residues have considerable potential as effective adsorbents for pollutant removal. The objectives of this review are to evaluate research conducted from 2015 to 2024 on treatment and modification techniques aimed at enhancing DWTRs' efficacy as adsorbents, analyze the influence of preparation methods on DWTRs performance, evaluate DWTRs adsorbents for different pollutants, and discuss the limitations and challenges in DWTRs applications. The review addresses the knowledge gap by detailed analysis of these advanced modification methods, which have not been extensively reviewed before, and their direct impact on the physicochemical properties and adsorption performance of DWTRs. The review explores various methods including thermal treatment, chemical activation, granulation, pelletization, and the development of composite materials. Key findings indicate that thermal treatment significantly increases surface area and porosity, while chemical activation introduces functional groups that enhance adsorption capacity. Composite DWTRs, incorporating metals, organic compounds, or magnetic properties, demonstrate superior performance in adsorbing diverse contaminants such as dyes and heavy metals. Despite these advancements, challenges remain, particularly in reporting the life cycles and costs of the treated and modified DWTRs and the regeneration of spent adsorbents. The review highlights the importance of optimizing preparation techniques to enhance the physicochemical properties and adsorption performance of DWTRs. By synthesizing existing knowledge and identifying key areas for future research, this review aims to advance sustainable practices in water treatment and resource recovery, aligning with global sustainability goals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.