Abstract

Membrane-bound receptors often form large assemblies resulting from binding to soluble ligands, cell-surface molecules on other cells, and extracellular matrix proteins1. For example, the association of membrane proteins with proteins on different cells (trans interactions) can drive the oligomerization of proteins on the same cell (cis interactions)2. A central problem in understanding the molecular basis of such phenomena is that equilibrium constants are generally measured in three-dimensional (3D) solution and are thus difficult to relate to the two-dimensional (2D) environment of a membrane surface. Here we present a theoretical treatment that converts 3D to 2D affinities accounting directly for the structure and dynamics of the membrane-bound molecules. Using a multi-scale simulation approach we apply the theory to explain the formation of ordered junction-like clusters by classical cadherin adhesion proteins. The approach includes atomic-scale molecular dynamics simulations to determine inter-domain flexibility, Monte-Carlo simulations of multi-domain motion, and lattice simulations of junction formation3. A finding of general relevance is that changes in inter-domain motion upon trans binding plays a crucial role in driving the lateral, cis, clustering of adhesion receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.