Abstract

Fungi and soil bacteria are vital for organic matter decomposition and biogeochemical cycles, but excessive synthetic fertilizer use contributes to soil degradation and loss of biodiversity. Despite this, about 97% of soil microorganisms are unculturable, making them difficult to study. Metagenomics offers a solution, enabling the direct extraction of DNA from soil to uncover microbial diversity and functions. This study utilized metagenomics to analyze the rhizosphere of two-year-old Tonda di Giffoni hazelnut saplings treated with synthetic NPK, composted olive pomace, and an innovative fertilizer derived from sulfur-based agro-industrial waste stabilized with bentonite clay. Using 16S rDNA for bacteria and ITS2 for fungi, Illumina sequencing provided insights into microbial responses to different fertilizer treatments. The results highlighted a significant increase in the abundance of beneficial microorganisms such as Thiobacillus, Pseudoxanthomonas, and Thermomyces, especially when organic materials were included. Additionally, microbial biodiversity improved with organic inputs, as shown by increased species richness (Chao1) and diversity (Bray-Curtis) greater than 20% compared with NPK and unfertilized soils (CTR). These findings emphasize the importance of organic fertilization in enhancing soil microbial health, offering a sustainable approach to improving soil quality and hazelnut productivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.