Abstract

Liposomes (lipos), one of the most successful nanotherapeutics in the clinic, have made a rapid advance over the past few years. However, still, several challenges exist for lipos for clinical practice, such as low drug loading and premature drug leakage during in vivo circulation. Paclitaxel (PTX), a commonly used first-line drug for cancer chemotherapy, was chosen as the model drug. Due to its non-ionizable and water-insoluble characteristics, the drug-loading efficiency of the marketable PTX lipos, Lipusu, is only 6.76%. Herein, we designed an ionizable PTX prodrug (PTXP) by modifying phenylboronic acid on the C2' hydroxyl group of PTX for the remote loading of liposomal formulations through the pH gradient method. Compared with Lipusu, PTXP lipos displayed a 34% higher loading efficiency and an encapsulation efficiency of approximately 95%. A series of in vitro/vivo experiments indicated that PTXP lipos possess colloidal stability, prolonged blood circulation, high tumor site accumulation, potent anti-tumor effects, and safety. A combination of ionizable prodrugs and remote loading has proved to be an effective and simple strategy to achieve high liposomal encapsulation efficiency of poorly soluble non-ionizable drugs for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call