Abstract

Most of the algorithms dealing with image based 3-D reconstruction involve the evolution of a surface based on a minimization criterion. The mesh parametrization, while allowing for an accurate surface representation, suffers from the inherent problems of not being able to reliably deal with self-intersections and topology changes. As a consequence, an important number of methods choose implicit representations of surfaces, e.g. level set methods, that naturally handle topology changes and intersections. Nevertheless, these methods rely on space discretizations, which introduce an unwanted precision-complexity trade-off. In this paper we explore a new mesh-based solution that robustly handles topology changes and removes self intersections, therefore overcoming the traditional limitations of this type of approaches. To demonstrate its efficiency, we present results on 3-D surface reconstruction from multiple images and compare them with state-of-the art results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.