Abstract

Characterized by low leakage current and low voltage stress of the power device, a neutral point clamped three-level inverter (NPCTLI) is suitable for a transformerless photovoltaic (PV) grid-connected system. Unfortunately, the shoot-through problem of bridge legs still exists in an NPCTLI, so its operation reliability is degraded. An improved three-level grid-connected inverter is proposed based on the NPCTLI and the dual-buck half-bridge inverter (DBHBI), and which avoids the shoot-through problem. The proposed topology guarantees no switching-frequency common-mode voltage and no shoot-through risk. Furthermore, the freewheeling diode of bridge legs of the DBHBI can be removed taking into consideration the unity power factor of grid current, and a straightforward topology is thus derived. The new topology is referred to as split-inductor NPCTLI (SI-NPCTLI). The operation mode, common-mode characteristic, and control strategy are analyzed. Finally, both the simulation and the experimental results of a 1-kW SI-NPCTLI prototype verify the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.