Abstract

A transformer-less soft-switching high-gain pulsewidth-modulation (PWM) converter is proposed in this article. The proposed converter is derived from a single-switch dual-inductor transformer-less boost converter by replacing the complementary diode connected to the switch with a synchronous rectifier switch. Moreover, the peak value of the reverse current of the rear-end inductor in continuous bidirectional conduction mode (CBCM) is regulated to exceed the input inductor valley current. Based on these two measures, the zero-voltage switching (ZVS) for all switches and the natural turn-off for the output diode are realized, and the effective duty cycle is enhanced. Besides, the proposed ZVS converter has the merits of fewer power components count, reduced voltage stress, and lower cost. Furthermore, the ringing issue in the original topology under light load or high input voltage conditions is eliminated. The operation principle, steady-state characteristics, dynamic model, soft-switching operation, and realization conditions are analyzed in detail, and subsequently, the parameter design method is elaborated. The proposed topology demonstrates an enhanced efficiency performance over wide operating operations with a maximum efficiency of 97.1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call