Abstract
Single image super-resolution (SISR) has witnessed great strides with the development of deep learning. However, most existing studies focus on building more complex networks with a massive number of layers. Recently, more and more researchers start to explore the application of Transformer in computer vision tasks. However, the heavy computational cost and high GPU memory occupation of the vision Transformer cannot be ignored. In this paper, we propose a novel Efficient Super-Resolution Transformer (ESRT) for SISR. ESRT is a hybrid model, which consists of a Lightweight CNN Backbone (LCB) and a Lightweight Transformer Backbone (LTB). Among them, LCB can dynamically adjust the size of the feature map to extract deep features with a low computational costs. LTB is composed of a series of Efficient Transformers (ET), which occupies a small GPU memory occupation, thanks to the specially designed Efficient Multi-Head Attention (EMHA). Extensive experiments show that ESRT achieves competitive results with low computational cost. Compared with the original Transformer which occupies 16,057M GPU memory, ESRT only occupies 4,191M GPU memory. All codes are available at https://github.com/luissen/ESRT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.