Abstract
Pain, a pervasive global health concern, affects a large segment of population worldwide. Accurate pain assessment remains a challenge due to the limitations of conventional self-report scales, which often yield inconsistent results and are susceptible to bias. Recognizing this gap, our study introduces PainAttnNet, a novel deep-learning model designed for precise pain intensity classification using physiological signals. We investigate whether PainAttnNet would outperform existing models in capturing temporal dependencies. The model integrates multiscale convolutional networks, squeeze-and-excitation residual networks, and a transformer encoder block. This integration is pivotal for extracting robust features across multiple time windows, emphasizing feature interdependencies, and enhancing temporal dependency analysis. Evaluation of PainAttnNet on the BioVid heat pain dataset confirm the model's superior performance over the existing models. The results establish PainAttnNet as a promising tool for automating and refining pain assessments. Our research not only introduces a novel computational approach but also sets the stage for more individualized and accurate pain assessment and management in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.