Abstract
AbstractIn this paper, a solver based on a 3D boundary element method (BEM) is presented and verified on a transformer geometry. Using a triangular surface mesh of a winding, the unknown charge distribution is found from known potentials of surfaces using the integral equation approach and point matching. The capacitance matrix is calculated from known potentials in nodes of the system. The application of BEM and point‐matching results in a fully populated system matrix. Therefore, a matrix reduction technique adaptive cross approximation (ACA) is employed in order to reduce the CPU time and memory requirements. Both the accuracy of the direct and the accuracy of the ACA approach are benchmarked against the results obtained using the professional finite element method (FEM)‐based software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.