Abstract

In recent years, the use of renewable energy has grown significantly in electricity generation. However, the output of such facilities can be uncertain, affecting their reliability. The forecast of renewable energy production is necessary to guarantee the system’s stability. Several authors have already developed deep learning techniques and hybrid systems to make predictions as accurate as possible. However, the accurate forecasting of renewable energy still is a challenging task. This work proposes a new hybrid system for renewable energy forecasting that combines the traditional linear model (Seasonal Autoregressive Integrated Moving Average—SARIMA) with a state-of-the-art Machine Learning (ML) model, Transformer neural network, using exogenous data. The proposal, named H-Transformer, is compared with other hybrid systems and single ML models, such as Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Networks (RNN), using five data sets of wind speed and solar energy. The proposed H-Transformer attained the best result compared to all single models in all datasets and evaluation metrics. Finally, the hybrid H-Transformer obtained the best result in most cases when compared to other hybrid approaches, showing that the proposal can be a useful tool in renewable energy forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.