Abstract

The escalating generation of hazardous waste (HW) has become a pressing concern worldwide, straining waste management systems and posing significant health hazards. Addressing this challenge necessitates an accurate understanding of HW generation, which can be achieved through the application of advanced models. The Transformer model, known for its ability to capture complex nonlinear processes, proves invaluable in extracting essential features and making precise HW generation predictions. To enhance comprehension of the key factors influencing HW generation, visualization techniques such as SHapley Additive exPlanations (SHAP) provide insightful explanations. In this study, a novel approach combining classical deep learning algorithms with the Transformer model is proposed, yielding impressive results with an R2 value of 0.953 and an RMSE of 7.284 for HW prediction. Notably, among the five key fields considered—demographics, socio-economics, industrial production, environmental governance, and medical health—industrial production emerges as the primary contributor, accounting for over 50% of HW generation. Moreover, a high rate of industrial development is anticipated to further accelerate this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.