Abstract
In this paper, we investigate a three-component AB model, which characterizes the baroclinic instability processes in the geophysical flows. Via the Darboux transformation, the breather solutions are derived. Then, we study the state transition and find that the breather solutions can be transformed into different kinds of stationary nonlinear waves, including the anti-dark soliton, multi-peak soliton, M-shaped soliton, W-shaped solitons and periodic waves. Moreover, by virtue of the second-order transformed solution, various nonlinear wave complexes are presented. Finally, we unveil the relationship between the modulation instability and state transition and show the existence regions for the transformed waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.