Abstract

In this paper, the results of research on additively manufactured aerospace parts made of maraging steel are presented. This state-of-the-art technology seems to have the highest potential for practical use in the field of ultra-light and high-performance aerospace hydraulic parts. The strength properties of representative specimens made with steel 1.2709 were investigated. The researchers conducted static tensile testing, fatigue tensile testing, and pressure impulse testing. A Goodman diagram was plotted to visualize the impact of the building orientation vs. load character on the fatigue strength of the additive manufacturing (AM) specimens. Based on the research carried out on the strength of the AM samples, an aircraft flight control actuator was designed to achieve the highest level of safety integrity along with the greatest simplicity and lowest weight relative to hydraulic actuators manufactured using classical methods. The entire design process was integrated with the manufacturing process to achieve this target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.