Abstract
We investigated conditions for the violation of the structural stability of a spiral beam subject to sector perturbations. Based on the method of computer simulation and measurement of mode spectra, we have shown that a spiral vortex beam has a characteristic caustic surface, the intersection of which sharply changes the shape of the Poynting vector streamlines and the total topological charge of the beam. Sector beam perturbation does not almost change the streamline structure up to scale and rotation. We found that perturbation of the beam causes a change in the direction of circulation of streamlines in the region of perturbation, which is caused by the appearance of vortices with negative topological charges. Their contribution to the total energy flow is fractions of a percent. However, such perturbations do not cause changing the OAM in the beam, despite an increase in the number of vortex modes. Nevertheless, the perturbed beam remains only conditionally structurally stable due to the presence of a small fraction of optical currents with opposite circulations.
Highlights
Transformations of structurally stable states of spiral beams subjected to sector perturbations
We investigated conditions for the violation of the structural stability of a spiral beam subject to sector perturbations
Based on the method of computer simulation and measurement of mode spectra, we have shown that a spiral vortex beam has a characteristic caustic surface, the intersection of which sharply changes the shape of the Poynting vector streamlines and the total topological charge of the beam
Summary
Здесь Cm – амплитуда LG0, m - пучка с нулевым радиальным числом (общий вид амплитуды можно найти в [32]), а его комплексная амплитуда записывается как LG0,m X ,Y , Z. 2 пересечения линий градиента фазы задают положения критических точек. 2. Компьютерное моделирование каустики: пересечения тонких фазовых линий задают положения критических точек, жирные точки – решения уравнения (9), треугольные линии равной интенсивности = 0,05. Учитывая результат компьютерного моделирования в виде критических условий (9), поверхность, сформированную образующей f , можно рассматривать в качестве каустической поверхности [22], в то время как проекция прямых лучей на плоскость z = 0 отображает лучевую каустику, изображенную на рис.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.