Abstract

The influence of temperatures of 250, 300, and 350°C on the character of changes in the group and hydrocarbon compositions of heavy oil from the Ashal’chinskoe field in laboratory experiments on the simulation of oil aquathermolysis processes under reservoir conditions has been revealed. The experiments have been carried out in the presence of kaolin as a rock-forming mineral, using oil-soluble iron carboxylate and tetralin as a proton donor. It has been shown that temperature elevation to 300 and 350°C increases the amount of saturated fractions by factors of 1.5 and 1.75, respectively, and decreases the resin content almost by half in comparison with the initial oil. The proportion of n-alkanes and light alkylcyclohexane and trimethylalkylbenzene homologues in the saturated fractions increases as a result of cracking reactions involving the preferential degradation of high-molecular-weight resins. A noticeable increase in the amount of newly formed hydrocarbons and asphaltenes at the temperature of 350°C indicates that not only intensive cracking processes, but also condensation processes occur under these conditions. Changes in the quantitative and qualitative composition of the proton donor tetralin by its dehydrogenation to form naphthalene and hydrogenation to yield the cis- and trans-isomers of decalin have been revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.