Abstract
Bayesian synthetic likelihood (BSL) is an established method for performing approximate Bayesian inference when the likelihood function is intractable. In synthetic likelihood methods, the likelihood function is approximated parametrically via model simulations, and then standard likelihood-based techniques are used to perform inference. The Gaussian synthetic likelihood estimator has become ubiquitous in BSL literature, primarily for its simplicity and ease of implementation. However, it is often too restrictive and may lead to poor posterior approximations. Recently, a more flexible semi-parametric Bayesian synthetic likelihood (semiBSL) estimator has been introduced, which is significantly more robust to irregularly distributed summary statistics. A number of extensions to semiBSL are proposed. First, even more flexible estimators of the marginal distributions are considered, using transformation kernel density estimation. Second, whitening semiBSL (wsemiBSL) is proposed – a method to significantly improve the computational efficiency of semiBSL. wsemiBSL uses an approximate whitening transformation to decorrelate summary statistics at each algorithm iteration. The methods developed herein significantly improve the versatility and efficiency of BSL algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.