Abstract

Interaural time differences (ITDs) are used to localize sounds and improve signal detection in noise. Encoding ITDs in neurons depends on specialized mechanisms for comparing inputs from the two ears. Most studies have emphasized how the responses of ITD-sensitive neurons are consistent with the tenets of the Jeffress model. The Jeffress model uses neuronal coincidence detectors that compare inputs from both sides and delay lines so that different neurons achieve coincidence at different ITDs. Although Jeffress-type models are successful at predicting sensitivity to ITDs in humans, in many respects they are a limited representation of the responses seen in neurons. In the superior olivary complex (SOC), ITD-sensitive neurons are distributed across both the medial (MSO) and lateral (LSO) superior olives. Similar response types are found in neurons sensitive to ITDs in two signal types: low-frequency sounds and envelopes of high-frequency sounds. Excitatory–excitatory interactions in the MSO are associated with peak-type responses, and excitatory–inhibitory interactions in the LSO are associated with trough-type responses. There are also neurons with responses intermediate between peak- and trough-type. In the inferior colliculus (IC), the same basic types remain, presumably due to inputs arising from the MSO and LSO. Using recordings from the SOC and IC, we describe how the response types can be described within a continuum that extends to very large values of ITD, and compare the functional organization at the two levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.