Abstract

We introduce a transformation between the discrete-time and continuous-time algebraic Riccati equations. We show that under mild conditions the two algebraic Riccati equations can be transformed from one to another, and both algebraic Riccati equations share common Hermitian solutions. The transformation also sets up the relations about the properties, commonly in system and control setting, that are imposed in parallel to the coefficient matrices and Hermitian solutions of two algebraic Riccati equations. The transformation is simple and all the relations can be easily derived. We also introduce a generalized transformation that requires weaker conditions. The proposed transformations may provide a unified tool to develop the theories and numerical methods for the algebraic Riccati equations and the associated system and control problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.