Abstract

ObjectivesHistological transformation to small cell lung cancer (SCLC) has been identified as a mechanism of TKIs resistance in EGFR-mutant non-small cell lung cancer (NSCLC). We aim to explore the prevalence of transformation in EGFR-wildtype NSCLC and the mechanism of SCLC transformation, which are rarely understood.MethodsWe reviewed 1474 NSCLC patients to investigate the NSCLC-to-SCLC transformed cases and the basic clinical characteristics, driver gene status and disease course of them. To explore the potential functional genes in SCLC transformation, we obtained pre- and post-transformation specimens and subjected them to a multigene NGS panel involving 416 cancer-related genes. To validate the putative gene function, we established knocked-out models by CRISPR-Cas 9 in HCC827 and A549-TP53-/- cells and investigated the effects on tumor growth, drug sensitivity and neuroendocrine phenotype in vitro and in vivo. We also detected the expression level of protein and mRNA to explore the molecular mechanism involved.ResultsWe firstly reported an incidence rate of 9.73% (11/113) of SCLC transformation in EGFR-wildtype NSCLC and demonstrated that SCLC transformation is irrespective of EGFR mutation status (P = 0.16). We sequenced 8 paired tumors and identified a series of mutant genes specially in transformed SCLC such as SMAD4, RICTOR and RET. We firstly demonstrated that SMAD4 deficiency can accelerate SCLC transition by inducing neuroendocrine phenotype regardless of RB1 status in TP53-deficient NSCLC cells. Further mechanical experiments identified the SMAD4 can regulate ASCL1 transcription competitively with Myc in NSCLC cells and Myc inhibitor acts as a potential subsequent treatment agent.ConclusionsTransformation to SCLC is irrespective of EFGR status and can be accelerated by SMAD4 in non-small cell lung cancer. Myc inhibitor acts as a potential therapeutic drug for SMAD4-mediated resistant lung cancer.9vNWjpNbo9djtsBQF6k7BHVideo

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.