Abstract

Face-centered cubic (fcc) HEAs, particularly the typical FeCoNiCrMn HEA, are promising for cryogenic applications but generally exhibit relatively low strength at ambient temperature, which limits their widespread uses. In this work, we present a systematic study of enhancing simultaneously the strength and ductility of FeCoNiCrMn HEAs via tailoring the phase stability and stacking fault energy (SFE). It was found that in Fe20CoxNi40-xCr20Mn20 (x = 20–30 at.%) HEAs, with the increase of Co, the SFE was gradually decreased and another hcp (hexagonal close-packed) phase was eventually formed in the alloy containing 28 at.% Co. As a result, the deformation mode changes from dislocation glide to mechanical twinning, then to γfcc → εhcp martensitic transformation. Our analysis indicates that the small critical shear stress for twinning resulted from the reduced SFE provides a steady strain hardening rate in a wide strain regime and postpones the plastic instability, eventually leading to the concurrent enhancement in the tensile strength and ductility. Our results not only shed lights on understanding of the effects of SFE on the mechanical properties, but also have important implications on the development of HEAs with a unique combination of high strength and large ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.