Abstract

Transformation plasticity in magnesia‐partially‐stabilized zirconia (Mg‐PSZ) is studied using a split Hopkinson pressure bar modified for ceramic materials. Axial and transverse strains are measured under uniaxial compressive loading at a strain rate of 250/s. The transformation yield stress is found to increase from 900 MPa under quasi‐static loading to 1.2 GPa at high strain rate. Post‐yield deformation is characterized by shear and volumetric plastic strains up to 1.2%. During unloading, the axial and transverse plastic strains are partially recovered while the volume is conserved. Axially oriented microcracks are observed but they do no contribute significantly to plastic deformation in Mg‐PSZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.