Abstract

A methodology of designing an arbitrary transformation using transformation optics (TO) based on unitary vectors and Fermat's principle is presented. The TO equation is derived in terms of grid coordinates. The geometry of the transformed space is stored in the grid coordinates rather than the transformation functions. This allows the crafting of an arbitrary transformation by combining several transformation templates together. The touch interface is employed to intuitively apply the transformations. The resulting material parameters are calculated from the proposed method and verified using the anisotropic finite-difference frequency-domain method. Five examples are presented to demonstrate the capability of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.