Abstract

Zinc oxide is one of the most widely studied semiconductor metal oxides, which predominantly crystallizes as hexagonal wurtzite and often cubic zinc-blende phases. Here we report the transformation of the highly stable wurtzite ZnO to a new triclinic phase NZO-2 by using metformin as a template during post-synthesis hydrothermal treatment. This crystalline phase of the material NZO-2 has been identified through the refinement of the powder XRD data. NZO-2 possesses porous rod like particle morphology consisting of the self-assembly of 3-7 nm size spherical nanoparticles and interparticle nanoscopic voids spaces. NZO-2 has been surface phosphorylated and the resulting material displayed good proton conductivity. Further, NZO-2 displayed ultra-low band gap of 1.74 eV, thereby responsible for red emission under high energy laser excitation and this may open new opportunities in optoelectronic application of ZnO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call