Abstract
An experiment on transformation of biotite (fraction <1 μm) particles placed into containers with different permeability in the AEL horizon of podzolic soil was performed in order to estimate the contribution of different factors to the transformation of biotite in the modern soil. After two-year-long incubation in the AEL horizon, biotite was transformed into vermiculite, mixed-layer biotite–vermiculite, and pedogenic chlorite. The most intense vermiculitization of the biotite took place under the impact of fungal hyphae and, to a lower degree, fine plant roots and components of the soil solution. The formation of labile structures from biotite was accompanied by thinning of the mica crystallites, the disturbance of the homogeneity of layers, the removal of interlayer K, the removal and oxidation of octahedral Fe, the increase in the sum of exchangeable cations, and the appearance of exchangeable Al. The process of chloritization was definitely diagnosed upon the action of plant roots and fungal hyphae on the biotite. Strong complexing anions released by fungal hyphae partly inhibited chloritization. Chloritization led to a decrease in the cation exchange capacity of vermiculitic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.