Abstract

Hierarchical nanostructures have attracted increasing interest due to their exceptional properties and widespread potential applications. In this paper, anatase TiO2 hollow nanoboxes (TiO2-HNBs) are formed by assembly of nanosheets with exposed {001} facets by solvothermal treatment of TiOF2 cubes in alcohols (tert-butanol and ethanol) at 180 °C. It was found that phase transformation of TiOF2 to anatase TiO2 begins at corners and edges of TiOF2 cubes due to in situ hydrolysis of TiOF2, where water was produced by dehydration of alcohol molecules. With extension the reaction time, TiO2-HNB assemblies from nanosheets with exposed high-energy {001} facets were formed due to the steady inside-outside dissolution-recrystallization process. However, the resulting hierarchical TiO2-HNBs are unstable, which can decompose to discrete high-energy TiO2 nanosheets if the reaction time is further extended. The hierarchical TiO2-HNBs show higher photocatalytic activity than discrete high-energy TiO2 nanosheets and P25 TiO2 due to the unique structures of TiO2-HNBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.