Abstract

Camelina sativa is a promising under-exploited oilseed crop with potential to become a biofuel feedstock. The ability to transform C. sativa would allow for the rapid introduction of novel traits into this emerging crop. We report the development of an Agrobacterium-based floral dip transformation method, requiring no vacuum-infiltration step, with transformation efficiencies up to 0.8%. C. sativa cultivars Ames 26665, “Calena” A3U7761, Ames 1043, and “Celine” were tested using Agrobacterium tumefaciens strains GV3101, EHA105, and At503. Use of all strains and cultivars resulted in transformed plants; however, GV3101 was the only Agrobacterium strain and Ames 1043 the only C. sativa cultivar to yield transformed plants under all conditions tested. Progeny analysis revealed that in approximately 78% of the transformed plants, the transgene segregated as a single locus. Furthermore, a high-throughput, filter paper-based PCR method was developed to screen marker-free transformed plants. Together, these methods will allow for easier introduction of new genes into this promising oilseed crop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.