Abstract

The resonant filtering method transforming frequency modulated radiation field into a train of short pulses is proposed to apply in optical domain. Effective frequency modulation can be achieved by electro-optic modulator or by resonant frequency modulation of the filter with a narrow absorption line. Due to frequency modulation narrow-spectrum CW radiation field is seen by the resonant filter as a comb of equidistant spectral components separated by the modulation frequency. Tuning narrow-bandwidth filter in resonance with $n$-th spectral component of the comb transforms the radiation field into bunches of pulses with $n$ pulses in each bunch. The transformation is explained by the interference of the coherently scattered resonant component of the field with the whole comb. Constructive interference results in formation of pulses, while destructive interference is seen as dark windows between pulses. It is found that the optimal thickness of the resonant filter is several orders of magnitude smaller than the necessary thickness of the dispersive filters used before in optical domain to produce short pulses from the frequency modulated field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call