Abstract

Dinoflagellate algae are ecologically and environmentally important, as symbionts of corals and many other aquatic organisms, and the causative agents of red tides. However, attempts over the last twenty years to establish genetic manipulation systems for dinoflagellates have met with little success. We have exploited the unusual chloroplast genome of dinoflagellates to establish a system for transformation of this organelle. The chloroplast genome of peridinin-containing (the ancestral state) dinoflagellates is highly reduced and composed of a number of small, plasmid-like molecules, referred to as ‘minicircles’. We have constructed shuttle vectors that are fusions of minicircles and Escherichia coli plasmids and carry selectable markers. We used biolistic transformation to introduce these into the model dinoflagellate Amphidinium carterae. We found that the plasmids confer the expected phenotype on the dinoflagellate cells, and we can detect the plasmid DNA and associated transcripts following selection, indicating successful transformation. This opens up the possibility of studying many aspects of dinoflagellate chloroplast biology, including the maintenance and expression of the minicircles, and the role of the chloroplast in phenomena such as coral bleaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.