Abstract
Tetracycline antibiotics (TCs) are a group of the top selling and widely used antibiotics that have been frequently detected in various environments. The interaction between TCs and goethite (α-FeOOH), one of the most common crystalline oxide minerals in aqueous environment and soil, is unclear. Apart from adsorption, this study firstly demonstrated that transformation of tetracycline (TTC) occurred in the presence of goethite. The transformation kinetics and mechanism of TTC with goethite were investigated to gain a better understanding of the fate of TCs in the natural environment. The results showed that the transformation of TCs by goethite explicitly exhibited two-stage kinetics, wherein an initial period of fast transformation was followed by a continuous slow transformation. Hydroxyl groups on goethite were identified as major reactive sites, among which singly coordinated hydroxyls (FeOH) were more reactive than doubly coordinated hydroxyls (Fe2OH) towards the transformation of TTC. On the basis of transformation rates, speciation of TTC and functional groups on goethite surface, a kinetic model was established successfully describing the transformation of TTC by goethite under conditions of varying reactant concentration and pH. The transformation of TTC by goethite mainly resulted in a N,N-dedimethylation product that did not show antimicrobial properties towards Escherichia coli. This study indicates that Fe(III)-(hydro)oxides in soils and sediments may play an important role in the natural attenuation of tetracycline antibiotics and their bioactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.