Abstract
The expression of the green-fluorescent protein (GFP) gene from Aequorea victoria (jellyfish) was analyzed by transient and stable expression in sweet potato Ipomoea batatas L. (Lam.) ev. Beauregard tissues by electroporation and particle bombardment. Leaf and petiole segments from in vitro-raised young plantlets were used for protoplast isolation and electroporation. Embyrogenic callus was also produced from leaf segments for particle bombardment experiments. A buffer solution containing 1×106 protoplasts ml−1 was mixed with plasmid DNA containing the GFP gene, and electroporated at 375 V cm−1. Approximately 25–30% of electroporated mesophyll cell protoplasts subsequently cultured in KM8P medium regenerated cell walls after 48 h. Of these, 3% emitted bright green fluorescence when exposed to UV-blue light at 395 nm. Transformed cells continued to grow after embedding in KM8P medium solidifed with 1.2% SeaPlaque agarose. Stable expression of GFP was observed after 4 wk of culture in approximately 1.0% of the initial GFP positive cells (27.5 GFP positive micro callases out of 3024 cells which transiently expressed GFP 48 h after electroporation). In a separate experiment, 600–700 bright green spots were observed per plate 48 h after bombarding leaf segments or embryogenic cellus. In bombarded cultures, several stable GEP-expressing sectors were observed in leafderived embryogenic callus grown without selection for 4 wk. These results show that GFP gene expression can occur in various sweet potato tissues, and that it may be a useful sereenable marker to improve transformation efficiency and obtain transgenic sweet potato plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Plant
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.