Abstract

We previously showed that satellite cells isolated from rabbit fast-twitch and slow-twitch muscles presented different behaviours in culture; cells from slow muscle differentiated more quickly and fused into more numerous myotubes than those from fast muscle. Moreover, only slow-muscle derived satellite cells expressed in vitro the slow type I myosin heavy chain isoform (MyHC). We wanted to investigate whether the properties of satellite cells originating from different muscles were under the influence of the adult fibre type on which they were located. For this purpose, we transformed the properties of the adult rabbit fast-twitch semimembranosus accessorius (SMa; approximately 100% type II fibres) and the slow-twitch semimembranosus proprius (SMp; 100% type I fibre) muscles by (1) cross-reinnervating the SMp with the main branch of the fast SMa nerve; or (2) electrical stimulation at 10 Hz of the SMa muscle. We studied their satellite cells in vitro. Five-month cross-reinnervation of the SMp induced a large shift of its MyHC type characteristics towards those of a fast muscle, and three-month electrical stimulation at low frequency transformed the fast-twitch SMa into a slow-twitch muscle, as shown by SDS-PAGE of MyHC. In spite of the transformation of their muscle characteristics, satellite cells in culture kept their original properties. Indeed, as shown by MyoD and myogenin gene expression as markers of fusion, satellite cells isolated from cross-reinnervated and from control SMp began to fuse by eight days of culture, and expressed MyoD and myogenin at that stage. Later they differentiated into numerous myotubes. Satellite cells isolated from electrically stimulated and control SMa presented a similar behaviour in culture: they did not express MyoD and myogenin at eight days, and fused by ten days into only a few myotubes. Moreover, MyHC gene expression showed that, in contrast with slow-muscle derived satellite cells, the type I MyHC gene was not expressed by satellite cells isolated from the stimulated SMa in spite of its homogeneous type I fibre composition. Taken together, these data support the idea that once constituted, muscle fibre types per se do not influence the properties of their associated satellite cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.