Abstract

BackgroundManufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated.ResultsSequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively].The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported.ConclusionsSilver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities.

Highlights

  • Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and their concentrations in wastewater and wastewater treatment plants are predicted to increase

  • The cumulative concentration of Ag in the mixed liquor was less than the nominal value possibly due to losses of mixed liquor that occurred during sampling for nitrification analysis and during decanting

  • Ag losses may have been due to sorption/complexation of Ag/Silver nanoparticles (AgNPs) onto sequencing batch reactor (SBR) tubing and container walls

Read more

Summary

Introduction

Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and their concentrations in wastewater and wastewater treatment plants are predicted to increase. The solid phase speciation of silver in sludge and wastewater influent was examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Manufactured nanomaterials (MNMs) encompass a variety of engineered materials, which can be divided into two groups for the sake of clarity: nano-sized particles (having at least two dimensions < 100 nm) and secondly, materials that are not particulate but have nano-sized properties [1] (i.e. enhanced electronic, optical and chemical properties compared to the bulk material). Silver NPs may enter wastewater through the washing of Ag nano-containing textiles [3,4] or plastics [5], or as a result of the use of nano-enhanced outdoor paints [6] and washing machines [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call