Abstract

The arachidonic acid-producing fungus Mortierella alpina 1S-4, an industrial strain, was endowed with Zeocin resistance by integration of the Zeocin-resistance gene at the rDNA locus of genomic DNA. Plasmid DNA was introduced into spores by microprojectile bombardment. Twenty mg/ml Zeocin completely inhibited the germination of M. alpina 1S-4 spores, and decreased the growth rate of fungal filaments to some extent. It was suggested that preincubation period and temperature had a great influence on transformation efficiency. Four out of 26 isolated transformants were selected. Molecular analysis of these stable transformants showed that the plasmid DNA was integrated into the rDNA locus of the genomic DNA. We expect that this system will be applied for useful oil production by gene manipulation of M. alpina 1S-4 and its derivative mutants. On the basis of the fundamental transformation system, we also tried to overexpress a homologous polyunsaturated fatty acid elongase gene, which has been reported to be included in the rate-limiting step for arachidonic acid production, thereby leading to increased arachidonic acid production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call