Abstract

This contribution presents a viable gaseous hydrodeoxygenation (HDO) route for Levoglucosan (LG) that leads to the formation of non-oxygenated hydrocarbon cuts that make commercial transportation fuels, namely gasoline, diesel, and jet fuels. The outlined process encompasses HDO of an evaporated stream of dissolved LG over 5% Ni-CeO2 catalysts between 100 °C–500 °C. It is found that the load of the aliphatic compounds attains values between 68.1% and 75.3% across the investigated temperature window. Similarly, fractions of aromatic compounds remain within 8.1%–13.9%. Major observed aliphatic compounds include tetradecane, dodecane, octane, and decane. Alkylated benzenes appear in appreciable quantities. Governing HDO's mechanisms were mapped out by density functional theory (DFT) calculations. Utilizing a 10% load of Ni has slightly reduced the relative area of aliphatic compounds. The combined area of the oxygenated compounds remains less than 10% at all temperatures. This finding entails a profound HDO's capacity of the deployed catalyst and opens a direct venue for the effective utilization of LG in fuel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.